US009330191B2

a2 United States Patent 10) Patent No.: US 9,330,191 B2
Teevan et al. (45) Date of Patent: May 3, 2016
(54) IDENTIFYING CHANGES FOR ONLINE 7,260,773 B2* 82007 Zemnik ..o, 715/229
DOCUMENTS 7,383,334 B2* 6/2008 Wongetal. ... 709/224
7487,190 B2* 2/2009 Black et al.
. . . 2003/0195963 Al* 10/2003 Songetal.cccooeeene. 709/227
(75) Inventors: Jaime Teeval.l, Be.llevue, WA (US); 2004/0093347 Al* 5/2004 Dada ..o..cccovvvvevvvnnn. 707/103 R
Susan Dumais, Kirkland, WA (US); 2005/0108418 Al 5/2005 Bedi et al.
Daniel Liebling, Seattle, WA (US); 2006/0064467 Al 3/2006 Libby
Richard Hughes, Monroe, WA (US) 2007/0150556 Al 6/2007 Fukuda et al.
2008/0120368 Al* 52008 Galeetal.cccoeevenee 709/203
. 2008/0147851 Al 6/2008 Le et al.
(73) Assignee: Microsoft Technology Licensing, LLC, 2008/0178117 Al* 7/2008 Gelman et al. .o.ovrv.n.. 715/808
Redmond, WA (US) 2008/0195674 Al 82008 Kim et al.
2009/0198677 Al* 82009 Sheehyetal. 707/5
(*) Notice: Subject to any disclaimer, the term of this 2010/0005053 A1* 1/2010 EStescccooovvrioiirinnins 707/1
patent is extended or adjusted under 35
U.S.C. 154(b) by 1240 days. OTHER PUBLICATIONS
“Web Page Differ”, http://sourceforge net/projects/webdiffer/.
(21) Appl. No.: 12/484,607 “Web Page Changes Viewer”, 1999-2009, http://sourceforge net/
. projects/wpev/#item3rd-1.
(22) Filed: Jun. 15, 2009 (Continued)
(65) Prior Publication Data
Primary Examiner — Manglesh M Patel
US 2010/0318892 Al Dec. 16, 2010 (74) Attorney, Agent, or Firm — Florin Corie; Cassandra
(51) Int.Cl Swain; Micky Minhas
GO6F 17/00 (2006.01) (57) ABSTRACT
GO6F 17/30 (2006.01))) o
(52) US.CL Techmq}les apd systems are dls.closed for pr0V1d11.1g changed
CPC oo, GOGF 17/3089 (2013.01) contentidentification for an online document that is accessed
(58) Field of Classification Search by a user or user agent. A reference point for an online
CPC GOGF 17/2211: GOGF 17/2247 document that a user or user agent is interested in accessing is
USPC """""""""""" 71’ 5/200. 229, 234 identified, comprising a stored prior version of the document.
See a hcatlon ﬁle forcomlete ;earch hist,o ’ The prior version of the document is retrieved, when the user
PP P 24 or user agent accesses the online document, such as by using
(56) References Cited the reference point. Elements of the prior version are com-

U.S. PATENT DOCUMENTS

6,012,087 A 1/2000 Freivald et al.

6,377,957 B1* 4/2002 Jeyaraman 707/625
6,560,620 B1* 5/2003 Ching 715/229
6,848,078 B1* 1/2005 Birsan et al. .. 715/206
6,931,590 B2* 8/2005 Kanieetal 715/234
6,954,766 B2* 10/2005 Ouchi

pared with elements of a current version of the document, to
determine whether there are differences between the ver-
sions. If changes are identified between the prior version and
the current version, the current version is automatically
updated with visual or auditory representations that identify
those changes of content.

20 Claims, 7 Drawing Sheets

206

208

WWW.CONVENTIONINFO.COM

WWW.CONVENTIONINFQ.COM

CONVENTION DETAILS

DATE: APR 28 - APR 30, 2009

PLACE: BOSTON CONVENTION
CENTER

SPEAKER: SCJ O.W. HOLMES

CONVENTION DETAILS

DATE: MAR 2 - MAR 4, 2009

PLACE: NYC CONVENTION
CENTER

[SPEAKER: SCJ B.N. CARDOZO

210

212

US 9,330,191 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS
“WebWatcher”, 1999-2009, http://sourceforge.net/projects/

webwatcher/.

“DeltaSpy 1.7”, 2006, pp. 1-2, http://www.qweas.com/download/
internet/web__browser__tools/deltaspy.htm.

“Versionista Launches Integrated Web Versioning”, Jan. 25, 2009,
http://versionista.com/introducing-revision-history.shtml.

Adar et al., “Zoetrope: Interacting with the ephemeral Web.”, Oct.
19-22, 2008, Monterey, CA, USA, http://portal.acm.org/citation.
cfm?id=1449715.1449756.

Adar et al., “Resonance on the Web: Web dynamics and revisitation
patterns”, Apr. 4-9, 2009, Boston, MA, USA, http://people.csail.mit.
edu/teevan/work/publications/papers/chi09-resonance.pdf.

Bharat et al., “Mirror, mirror on the Web: A study of host pairs with
replicated content”, http://www.cumbrowski.com/carstenc/pdf/Mir-
ror_Mirror_on_the Web-A_Study_of Host_Pairs-with_ Rep-
licated__Content.pdf.

Bucy et al., “Formal features of cyberspace: Relationships between
Web page complexity and site traffic”, 1999-2009 John Wiley &
Sons, Inc., http://www?3.interscience.wiley.com/journal/66001487/
abstract?CRETRY=1&SRETRY=0.

Liuetal., “WebCQ: Detecting and delivering information changes on
the Web”, Washington, DC USA, 2000, http://www.tangwei.net/pa-
pers/final-cikm00.pdf.

Liu et al., “Information monitoring on the Web: A scalable solution”,
International Conference on Information and Knowledge Manage-
ment (CIKM), Nov. 7-10, 2000, Washington D.C., ACM Press, pp.
512-519, http://www.cc.gatech.edu/projects/disl/CQ/papers/wwwij.
pdf.

Nadamoto, et al., “A Comparative Web Browser (CWB) for browsing
and comparing Web pages”, WWW2003, May 20-24, 2003, Budap-
est, Hungary, pp. 727-735, http://portal.acm.org/citation.
cfm?id=775152.775254.

Ntoulas et al., “What’s new on the Web? The evolution of the Web
from a search engine perspective”, WWW2004, May 17-22, 2004,
New York, New York, USA, http://www.cs.cmu.edu/~olston/publi-
cations/webstudy.pdf.

Obendorf et al., “Web page revisitation revisited: Implications of a
long-term click-stream study of browser usage”, Apr. 28-May 3,
2007, San Jose, California, pp. 597-606, http://portal.acm.org/cita-
tion.cfm?doid=1240624.1240719

Palme et al., “MIME encapsulation of aggregate documents, such as
HTML (MHTML)”, The Internet Society (1999), pp. 1-25, http://
www.rfc-editor.org/rfc/rfc2557 txt.

Pixley, Tom, “Document Object Model events”, Nov. 13, 2000, pp.
1-18, http://www.w3.0rg/TR/DOM-Level-2-Events/events.html.
Tauscher, et al., “How people revisit Web pages: Empirical findings
and implications for the design of history systems”, 1997 Academic
Press Limited, pp. 97-137, http://grouplab.cpsc.ucalgary.ca/
grouplab/uploads/Publications/Publications/1997-RevisitWeb.
IJHCS .pdf.

Teevan et al., “Information re-retrieval: Repeat queries in Yahoo’s
logs”, SIGIR’07, Jul. 23-27, 2007, Amsterdam, The Netherlands,
http://www.cond.org/sigir07.pdf.

Weinreich et al., “Not quite the average: An empirical study of Web
use”, ACM Transactions on the Web, vol. 2, No. 1, Article 5, Publi-
cation date: Feb. 2008, http://portal.acm.org/citation.
cfm?doid=1326561.1326566.

Catledge et al., “Characterizing browsing strategies in the World-
Wide Web”, http://’www.viktoria.se/~dixi/BISON/resources/
catledge-pitkow%201995 pdf.

Cho et al., “The evolution of the Web and implications for an incre-
mental crawler”, pp. 1-21, http://net.pku.edu.cn/~wbia/2004/pub-
lic__html/Readings/web%20dynamics/The%20Evolution%200{%-
20the%20Web%20and %20Implications%20for%20an%?20inc-
remental%20Crawler(2000).pdf.

Cockburn et al., “What do Web users do? An empirical analysis of
Webuse”, Int. J. Human-Computer Studies (2000), http://www.cosc.
canterbury.ac.nz/andrew.cockburn/papers/ijhcs Analysis.pdf.
Douglis et al., “Rate of change and other metrics: A live study of the
World Wide Web”, USENIX Symposium on Internetworking Tech-
nologies and Systems, Dec. 1997, http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.85.4216&rep=rep 1 &type=pdf.
Esposito, Dino, “Browser Helper Objects: The browser the way you
want it”, 1999, pp. 1-8, http://msdn.microsoft.com/en-us/library/
bb250436(printer).aspx.

Fetterly et al., “A large-scale study of the evolution of Web pages”,
WWW2003, May 20-24, 2003, Budapest, Hungary, pp. 669-678,
http://portal.acm.org/citation.cfm?id=775152.775246.

Foster et al., “Serendipity and information seeking: An empirical
study”, http://cadair.aber.ac.uk/dspace/bitstream/2160/292/5/
foster%20and%20ford%20paper%20JD114c.pdf.

Hupp Danis, “Smart Bookmarks: Automatic retroactive macro
recording on the Web”, Department of Electrical Engineering and
Computer Science, May 11, 2007, http://groups.csail.mit.edu/uid/
projects/bookmarker/thesis.pdf.

Jatowt et al., “What can history tell us? Towards different models of
interaction with document histories”, HT’08, Jun. 19-21, 2008, Pitts-
burgh, Pennsylvania, USA, pp. 5-14, http://portal.acm.org/citation.
cfm?1d=1379092.1379098.

Jones et al., “Query word deletion prediction”, SIGIR’03, Jul.
28-Aug. 1, 2003, Toronto, Canada, http://www.cs.cmu.edu/~rosie/
papers/jonesSIGIR2003Query.pdf.

Kellar et al., “An exploration of Web-based monitoring: Implications
for design”, CHI 2007, Apr. 28-May 3, 2007, San Jose, California,
USA, pp. 377-386, http://portal.acm.org/citation.cfm?id=1240686.
Levering et al., “The portrait of a common HTML Web page”,
DocEng’06, Oct. 10-13, 2006, Amsterdam, The Netherlands, http://
portal.acm.org/citation.cfm?id=1166213.

Linderman, MAtthew, “Web interface design tip: The yellow fade
technique”, Feb. 19, 2004, pp. 1-7, http://www.37signals.com/svn/
archives/000558.php.

* cited by examiner

U.S. Patent May 3, 2016 Sheet 1 of 7 US 9,330,191 B2

100
N

102

IDENTIFY REFERENCE POINT FOR DOCUMENT OF
INTEREST

/104

RETRIEVE PRIOR VERSION WHEN USER ACCESSES
DOCUMENT

/106

y

COMPARE PRIOR VERSION WITH CURRENT VERSION

/108

APPLY VISUAL OR AUDITORY REPRESENTATIONS TO
CURRENT VERSION IDENTIFYING CHANGES FROM
PRIOR VERSION

110
/—

112
END

FIG. 1

U.S. Patent May 3, 2016 Sheet 2 of 7 US 9,330,191 B2

200
N

202

216

206\ /208
~

(WWW.CONVENTIONINFO.COM A (WWW.CONVENTIONINFO.COM

CONVENTION DETAILS CONVENTION DETAILS

DATE: APR 28 — APR 30, 2009 DATE: MAR 2 - MAR 4, 2009
PLACE: BOSTON CONVENTION PLACE: NYC CONVENTION
CENTER CENTER
SPEAKER: SCJ O.W. HOLMES SPEAKER: SCJ B.N. CARDOZO
210—/ k212
. J \. J

FIG. 2

U.S. Patent May 3, 2016 Sheet 3 of 7 US 9,330,191 B2

300
N
302 \

IDENTIFY REFERENCE POINT

304

306
/_

IDENTIFY
GLOBAL———» DOCUMENT FROM
REFERENCE POINT

LOCAL OR
GLOBAL?

308
USER ACCESSED
HOCAL ™ DOCUMENT
310 | DETERMINE
™ DOCUMENT
STRUCTURE
312
314 314
N STORE EXISTING -
PRIOR PRIOR
VERSION VERSION 85 VERSION
PRIOR VERSION
316 318
LOCAL GLOBAL
CACHE CACHE

FIG. 3

U.S. Patent May 3, 2016 Sheet 4 of 7 US 9,330,191 B2

402 USER
N ACCESSES
DOCUMENT

A 4

404 CURRENT

VERSION
450

/// PRIOR
VERSION

452

RETRIEVE PRIOR| __ 406
VERSION(S) V~
FROM CACHE

454 PRIOR CURRENT
VERSION(S)/ VERSION 456
\i

\<

408 - COMPARE VERSIONS

410 412 414 416
NO NO NO
NO
YES YES

YESATfYES

\ 4 h 4

UPDATE 48— nNo
420—~| CURRENT CHANGES

VERSION WITH

CHANGES

FIG. 4

U.S. Patent May 3, 2016 Sheet 5 of 7 US 9,330,191 B2

|
554 I
|
|
|
~ |
e |
\\\\ i
| N
< 506 ~a¥
REF. POINT DOC. VERSION
IDENTIFIER ™ STORER RETRIEVER
CURRENT
VERSION PRIOR
VERSION(S)
DOC. WITH
VERSION CHANGE
_ CHANGES—» CHANGES
COMPARER IDENTIFIER DENTIFIED
508—/ 510_/
556
eoow
- N
602_\WWW.CONVENTIONINFO.COM
DOCUMENT CHANGE TOOLBAR
DOC. | TOGGLE |IGNORE|COMPARE-| LOAD [cirr o
STATUS| CHANGES | SITE | TOLIST |VERSION
7 7 7 7 7 7
606— 608— 610— 612— 614— 616—
CONVENTION DETAILS
DATE: APR 28 — APR 30, 2009
604 —~_|PLACE: BOSTON CONVENTION CENTER
SPEAKER: SCJ O.W. HOLMES
N y,

FIG. 6

U.S. Patent May 3, 2016 Sheet 6 of 7 US 9,330,191 B2

—_—— e e

|
|
|
|
72 L

COMPUTER
INSTRUCTIONS

714 v

01011010001010
10101011010101
101101011100...

U.S. Patent May 3, 2016 Sheet 7 of 7 US 9,330,191 B2

800 W

[1 _—820

STORAGE

822
OUTPUT DEVICE(S)

PROCESSING
UNIT

_—824

INPUT DEVICE(S)

MEMORY
_—826

COMMUNICATION
CONNECTION(S)

828

COMPUTING | 3830
DEVICE

FIG. 8

US 9,330,191 B2

1
IDENTIFYING CHANGES FOR ONLINE
DOCUMENTS

BACKGROUND

The online environment, including both the Internet and
plurality of intranets, can be very dynamic where content is
continually uploaded, changed, updated, removed, etc. Docu-
ments, such as web-pages, online work-processor type files,
PDF files, and other representations of documents can be
available online and accessible to users. Often, users search
for particular content, and/or access particular web-sites for
particular purposes. Some web-sites provide updated content
on a regular basis, such as news sites, blogs, discussion
boards, and retailer sale sites to name a few. Further, users
may be particularly interested in important content that
changes over time, such as times and dates of events, for
example.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key factors or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

Online content can change regularly and users can revisit
online content frequently. For example, users often revisit
websites to see if content of a web-page has changed, such as
news content, blog updates, and more. However, tools used to
access online content, such as web-browsers and search
engines, do little to explicitly support dynamic content
changes. Typically, when a user visits a colleague’s website
new papers that the colleague may have posted do not readily
identify themselves to the user. Web-based tools usually deal
with merely a single time slice of content available online. For
example, browsers show users a current version of a page, and
search engines use a single version that was indexed from a
most recent crawl of the web.

Previous and current techniques and systems that attempt
to identify changes in online content include Internet archive
services and some search engines that provide access to his-
torical version of web pages to users, where the user must
explicitly request prior versions and identify changes on their
own. Further, some services provide notifications of changes
to web content to user who subscribe to the service for spe-
cific pages. Additionally, some store multiple versions of
pages and attempt to identify changes and provide links to
prior content and mapping of change representations for a
current page, for specifically identified pages. Others attempt
to show changes by providing side-by-side comparisons or
integrated views of versions, requiring that users switch from
browsing to comparison views.

Techniques and systems are disclosed that provide identi-
fication of changes to online documents to users or user
agents, supporting awareness of changes when pages are
revisited, for example, or compared with prior archived ver-
sions. The identification of changes can be provided in a
lightweight, unobtrusive way that augments web browsing
and may not interfere with a user’s online browsing experi-
ence. Further, the change identification can be present while
the user or user agent browses online, automatically making
users aware of changes when they are identified, for example.

In one embodiment for providing changed content identi-
fication for an online document that is accessed by a user or
user agent, a reference point for an online document that a

10

15

20

25

30

35

40

45

50

55

60

65

2

user or user agent is interested in accessing can be identified,
which references a stored prior version of the document, such
as one that existed and was cached. When the user or user
agent accesses the online document, the prior version of the
document can be retrieved, for example, by using the refer-
ence point (e.g., retrieving the document from a local cache).
Elements of the prior version can be compared with elements
of a current version of the document, to determine whether
there are differences between the versions. If changes are
identified between the prior version and the current version,
the current version can automatically be updated with visual
or auditory representations, such as highlighting of changed
text, which identifies those changes of content.

To the accomplishment of the foregoing and related ends,
the following description and annexed drawings set forth
certain illustrative aspects and implementations. These are
indicative of but a few of the various ways in which one or
more aspects may be employed. Other aspects, advantages,
and novel features of the disclosure will become apparent
from the following detailed description when considered in
conjunction with the annexed drawings.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow-chart diagram of an exemplary method for
providing changed content identification for an online docu-
ment that is accessed by a user.

FIG. 2 is an illustration of an exemplary environment
where the one or more methods and/or systems described
herein can be implemented

FIG. 3 is a flow-chart diagram illustrating one embodiment
of'a portion of a method where prior versions of a document
can be identified and stored.

FIG. 4 is a flow-chart diagram illustrating one embodiment
of'a portion of a method where changes to an online document
can be identified.

FIG. 5 is a component block diagram of an exemplary
system for providing changed content identification for an
online document that is accessed by a user.

FIG. 6 is an illustration of an exemplary environment that
can be used to implement an application plug-in as provided
herein.

FIG. 71is anillustration of an exemplary computer-readable
medium comprising processor-executable instructions con-
figured to embody one or more of the provisions set forth
herein.

FIG. 8 illustrates an exemplary computing environment
wherein one or more of the provisions set forth herein may be
implemented.

DETAILED DESCRIPTION

The claimed subject matter is now described with reference
to the drawings, wherein like reference numerals are used to
refer to like elements throughout. In the following descrip-
tion, for purposes of explanation, numerous specific details
are set forth in order to provide a thorough understanding of
the claimed subject matter. It may be evident, however, that
the claimed subject matter may be practiced without these
specific details. In other instances, structures and devices are
shown in block diagram form in order to facilitate describing
the claimed subject matter.

A method may be devised that can provide awareness to
users that some content has changed in an online document
(e.g., web-page), for example, since a last time they accessed
the document online or from a prior version. Changes in the
content can be indicated to user without interfering with an

US 9,330,191 B2

3

existing web-browsing experience, for example. FIG. 1 is a
flow-chart diagram of an exemplary method 100 for provid-
ing changed content identification for an online document
that is accessed by a user.

The exemplary method 100 begins at 102 and involves
identifying one or more reference points for an online docu-
ment that a user or user agent (e.g., to allow programmable
access using an agent) may be interested in accessing, at 104,
where a stored prior version of the online document is avail-
able for the reference point. For example, a reference point
may be a point-in-time and a stored prior version of the
document may be available from that point-in-time. In this
example, the reference point can be used to access the docu-
ment stored at that point-in-time.

At 106, the prior version of the document is retrieved when
the user or user agent accesses the online document. In one
embodiment, accessing the online document can comprise
browsing to the document on the Internet, such as by access-
ing a web-page. Web-pages often contain content that is
changed periodically, for example, so when a user or user
agent accesses a current version of the web-page it may have
different content than when the user or user agent previously
accessed that page. In this example, when the user or user
agent accesses a current version of the web-page, the prior
version can be retrieved from the reference point, such as
from a local cache or an online storage location.

At 108, elements of the prior version of the online docu-
ment are compared with elements of a current version of the
document. An online document can be broken down into
elements, for example, in a variety of ways, depending on a
type of document. In one embodiment, the document (e.g., a
web-page) may comprise a graphical structure representa-
tion, such as a document object model (DOM) tree-graph
comprising DOM elements for the document. In this embodi-
ment, for example, a DOM-tree for the prior version can be
compared with a DOM-tree for the current version to deter-
mine whether there are differences between the elements
(e.g., structure, location, content, etc.) of the two versions.

In one aspect, comparing the elements of the versions may
comprise comparing merely those elements that are of inter-
est to the user or user agent. As an example, a user may only
be interested in detecting changes between versions for par-
ticular items, and ignoring other items, such as those that
change often, or are inconsequential (e.g., ads, graphics, etc.),
or those that are of little interest to the user (e.g., discussions
on topics that are not relevant to user’s tasks). In another
embodiment, a user may wish to ignore changes for entire
types of documents, for example, where an entire page
changes, or where the user may have security concerns about
storing prior versions of secure documents.

In one embodiment, identifying merely those elements of
interest to the user can comprise identifying elements that
have been selected by the user, for example, for which the user
has particular interest. In this example, the user may be able to
select items to identify if they have changed between ver-
sions. Further, in one embodiment, elements of interest to the
user can be based on regions of inferred relevance, for
example, by distinguishing between areas of a page that com-
prise content and areas that are non-content (e.g., ads, graph-
ics, etc.). Additionally, in one embodiment, elements of inter-
est to the user can be based on the user’s document accessing
patterns, such as when a user continually accesses a blog site
to check for updates, merely those changes to updated blogs
can be identified based the user’s prior visitation pattern.
Also, in one embodiment, elements of interest to the user can
be based on global document accessing patterns, such as by
tracking how a user utilizes the Internet (e.g., what pages they

10

15

20

25

30

35

40

45

50

55

60

65

4

visit, how often, what for, content, etc.), to infer which
changes the user may be interested in identifying.

At 110, in the exemplary method 100, the current version
of'the document is automatically updated with visual or audi-
tory representations that identify changes to the content, from
the prior version to the current version. It will be appreciated,
however, that identifying changes as provided herein does not
entail changing content, merely identifying changes to such
content. In one embodiment, updating the current version can
comprise changing a visual or auditory representation of a
changed element on the current version, for example, where
the element is different between the prior and current ver-
sions. Visual or auditory representations can be identifiers for
a user or user agent that content has changed between the
prior and current versions of the document. For example, a
change identifying visual or auditory representation can be
something that distinguishes the changed content from how
the current version is represented.

As an example, elements that are different between the
versions can be highlighted, where a different background
color distinguishes the changes from a normal background
color for the document. Other examples of static representa-
tions can include, changing a color of font, changing a size of
font, bolding the change, drawing lines around the change,
using some pointers to focus the change to the user, or some
combination of these. Examples of dynamic visual represen-
tations can include, fading the element between the prior
version and the current version, changing the visual represen-
tation of the changed element then fading to a typical repre-
sentation, using dynamic graphics, or some combination.
Examples of auditory representations may be distinguishing
sounds that identify changes when an element is selected or
represented on a display. The methods and systems described
herein are not limited to the above embodiments for visually
representing changed elements in a document. It is antici-
pated that those skilled in the art may devise alternatives to
these embodiments.

Having updated the current version of the online document
with visual representations of changes from the prior version,
the exemplary method 100 ends at 112.

FIG. 2 is an illustration of an exemplary environment 200
where the one or more methods and/or systems described
herein can be implemented, such as the exemplary method
100 described in FIG. 1. A user can use a computer 204 to
access the Internet 202, such as to access a particular docu-
ment 216 (e.g., web-page) to view its content. Typically,
online documents 216 are stored on remote storage systems
218, such as the document owner’s server or a server farm
used for web-content storage.

Inthis example 200, a reference point 214 may comprise an
existing version of the document 216, for example, that was
available at a particular time. In one embodiment, the refer-
ence point 214 can be a global reference point, such as a
point-in-time or particular version of the document 216 that is
merely available online, and is stored remotely 218, such as
on a remote server. In another embodiment, the reference
point 214 may be a local reference point, such as a particular
version of the document 216 that is stored locally on storage
in the computer 204.

In this example 200, when the user accesses the document
216 online, the prior version 206 is retrieved, as described
above, along with the current version 208. Elements of the
content 210 and 212 for the two versions can be compared to
determine if there are differences. In this example, the con-
vention details in the content 212 current version 208 com-

US 9,330,191 B2

5

prise changes to the date, place, and speaker, which have been
bolded in the illustrated example to draw the user’s attention
to the changed elements.

FIG. 3 is a flow-chart diagram illustrating one embodiment
300 of a portion of a method where prior versions of a docu-
ment can be identified and stored. At 302, areference point for
an online document can be identified. At 304, if the document
reference point is global, such as referring to an existing
version of a web-page available online (e.g., a reference point
from an online web-page archiving service that stores and
archives existing older versions of web-pages) the document
can be identified online from the reference point, at 306.

In one embodiment, once the document is identified from
the global reference point, the document may not need to be
stored. Because it has a global reference point already point-
ing to an existing storage location, the document can later be
retrieved from that remote storage location when it is called
for, using that reference point. In another embodiment, if the
reference point is local, at 304, such as referring to an existing
version of a web-page accessed by the user, the reference
point can identify the online document that was accessed by
the user at a previous point, at 308. For example, a local
reference point may point to a document that was accessed by
the user at some point, whereas the global reference point can
point to a document that has not been accessed by the user, but
that the user intends to access.

At 310, the structure of the document can be determined,
such as by a type of document or construction of the docu-
ment. For example, a document may comprise an image file,
a text-based file, web-page based code, DOM elements,
dynamic elements, or a plurality of other types of files and
elements or combination thereof. In this example 300, the
structure of the document can be determined in order to
provide for compatible storage. At 312, the existing version of
the document can be stored as a prior version, such as when
the user accesses the online document.

For example, when a user access a document online (e.g., a
web-based document file) that version of the document (exist-
ing version) can be cached locally 316 as a prior version for
future use 314. Further, the existing document may be stored
in a global cache 318 (e.g., remotely) as a previous version
314, such as in an online document archive. However if one or
more prior versions of the document are stored, the reference
point can be used to locate the stored version(s), for example.

In one embodiment, storing an existing version of the
document can comprise storing merely differences between a
prior stored version and a current stored version. For example,
a user may access a web-page on a first day and that first
version can be cached. On a second day, the user accesses a
second version of that web-page. In this example, instead of
storing both versions, merely the differences between the first
and second versions can be cached. Additionally, data in a
cache (e.g., either remotely or locally) that identifies when the
user accessed the document, for example, thereby providing
reference points for when the document was accessed.

In one aspect, online documents may have various struc-
tures and can be stored and compared in various ways. In one
embodiment, the document can be stored in a graphical-
structure representation, such as a DOM element tree struc-
ture. In another embodiment, the document can be stored as
an image-based representation, such as an image file (or
multiple image files) of the web-page. In another embodi-
ment, the document can be stored as a text-based representa-
tion, such as a word-processor based document. In another
embodiment, the document can be stored as a code-based
representation, such as an HTML file. In this way, in these

10

15

20

25

30

35

40

45

50

55

60

65

6

embodiments, the stored documents can be compared with
current documents based on the structure of the documents.

It will be appreciated that, while an existing version of a
document can be stored either locally or remotely as a prior
version, for later retrieval using the reference point prior to
element comparison, the methods and systems described
herein are not limited to these embodiments. For example, a
reference point may refer to an existing document online that
is a prior version of the document accessed by the user. In this
example, the prior version may not need to be stored and the
global reference point can be used to retrieve the document.

FIG. 4 is a flow-chart diagram illustrating one embodiment
400 of a portion of a method where changes to an online
document can be identified. At 402, the user accesses the
online document, for example, by navigating a browser to a
web-site hosting the document (e.g., web-page). The current
version of the document 404 is retrieved (e.g., by the
browser), for example, for viewing by the user.

At 406, one or more prior versions 452 of the document are
retrieved, using the reference point. A storage location 450
may comprise a local cache on the user’s machine, and/or a
remote storage location, such as a remote server or server
farm. While a typical user may merely wish to identify docu-
ment changes between the current version 404 and a most
recent prior version, a plurality of prior versions 452 may be
cached and retrieved for comparison with the current version
404.

At 408, the current version of the document 456 and the
retrieved one or more prior versions 454 are compared to
determine if there are differences (changes) between them,
such as by comparing the DOM trees for the current and prior
version. Comparing elements can comprise determining
whether a new element has been added between the prior and
current versions, at 410. Further, it can be determined whether
an element has been changed between the prior and current
versions, at 412. Additionally, it can be determined whether
an element has been moved between the prior and current
versions, at 414. It can also be determined whether an element
has been deleted between the prior and current versions, at
416.

If no differences are identified between the prior version
and the current version, no changes are made to the current
version of the document, at 418. However, if one or more
differences are identified, the current version of the document
can be updated to draw attention to the user, at 420. As
described above, a visual representation of the changed ele-
ments can be altered for the current version. In this way, for
example, the user may more readily be able to identify the
differences between the prior and current versions (e.g., as
shown in 210 and 212 of FIG. 2).

In one aspect, determining whether an element has
changed between versions may be performed in a plurality of
ways. For example, detecting a change between DOM ele-
ment trees may be different than detecting changes between
images. In one embodiment, determining whether an element
has been changed can comprise applying a function to the
prior version and to the current version to yield results. These
results can be compared to determine whether there is a
difference, within a desired threshold.

For example, where the documents are stored as DOM
element trees, the DOM trees can be run through some hash
function, and the versions can be compared by looking at how
the trees of hash function outputs differ in a depth-first man-
ner. In this example, starting at a root of the trees, a pre-
computed subtrees can be compared, and if the subtree hashes
are the same the content has not changed. For those subtrees

US 9,330,191 B2

7

that do not match, the comparison can traverse down branches
to detect the changed element.

In another aspect, representations of the documents (e.g.,
web-pages) that a user accesses (e.g., visits) can be stored
locally on a client machine (e.g., user’s computer), or may be
stored remotely (e.g., on a remote server). While modern
browsers comprise caching mechanisms that save previously
viewed content, these types of caches are typically used for
performance purposes (e.g., to speed loading of a page). In
one embodiment, a parallel cache can be created for version
comparison, for example, so that an application can control
cache expiration and store multiple versions of a same docu-
ment.

In one embodiment, representation of the document can be
tied to a particular identity, such as a web-page tied to a URL,
and/or a timestamp that indicates when the document was
accessed. For example, a file naming scheme may be utilized,
with respective representations stored in a file named with a
hash of its identity (e.g., URL), followed by a time and date.
Further, an amount of disk or volatile memory space used for
the cache can be configurable, along with an expiration time
for files. In this way, in this example, older pages can be
deleted to make room for new content. Additionally, a number
of desired versions for a document can be set for the cache,
thereby deleting older versions as new one are cached.

A system may be devised that can provide awareness to
users that some content has changed on an online document
(e.g., web-page), for example, since a last time they accessed
the document online. Changes in the content can be indicated
to user without interfering with an existing web-browsing
experience, for example. FIG. 5 is a component block dia-
gram of an exemplary system 500 for providing changed
content identification for an online document that is accessed
by a user.

A reference point identification component 502 identifies a
reference point for an online document that a user is interested
in accessing, such as from the Internet or an intranet 550. A
document storing component 504 can provide for storing of
an existing version of the document associated with the ref-
erence point as a prior version of that document. The docu-
ment storing component 504 may have the prior version
stored on a remote storage component 552, and/or a local
storage component 554, such as a local cache configured for
storing prior versions. In one embodiment, the document
storing component 504 can comprise a differentiation com-
ponent that identifies merely differences between a prior
stored version and a current stored version, and provides the
differences for storage. In this way, for example, storage
space may be saved by storing merely differences instead of
entire documents.

When the user accesses a current version of the online
document associated with the reference point, a version
retrieval component 506 retrieves the prior version, for
example, either from the remote storage 552 or local storage
554. A version comparison component 508 compares ele-
ments of the prior version (or versions) with elements of the
current version of the document accessed by the user.
Changes identified by the version comparison component
508 are used by a change identification component 510 to
automatically update the current version with visual repre-
sentations that identify the changes from the prior version to
the current version 556.

Therefore, the document accessed by the user can be dis-
played in a manner that identifies changes 556 between the
prior and current versions. For example, while the current
version of the document is loading in a browser, the prior
version can be retrieved and compared with the current ver-

10

15

20

25

30

35

40

45

50

55

60

65

8

sion. In this example, the visual representations of the
changes can be loaded on the current version when it is fully
loaded into the browser.

In one embodiment, the exemplary system may comprise
an element comparison selection component that a can be
used to determine which elements of the version to compare.
In one embodiment, the element comparison selection com-
ponent can identify elements for comparison that have been
selected by the user for comparison, such as those that are of
particular interest to the user. In another embodiment, the
element comparison selection component can identify ele-
ments for comparison based on the user’s document access-
ing patterns, such as how and when the user accesses docu-
ments of particular types, and for what purpose. In another
embodiment, the element comparison selection component
can identify elements for comparison based on global docu-
ment accessing patterns, for example, where users typically
access blogs merely to see if there has been an update.

In one embodiment, the system for providing changed
content identification for an online document that is accessed
by a user can be comprised in an application plug-in compo-
nent that is operably coupled with an application that is uti-
lized to access the documents (e.g., a web-browser applica-
tion). FIG. 6 is an illustration of an exemplary environment
600 that can be used to implement the application plug-in.

In this example, a web-browser 600 is used to access a
website (Www.conventioninfo.com), so that the user can view
its content 604. The application plug-in component can com-
prise a user interface 602 (UI) configured to provide system
configuration operations to the user. In this example, the Ul is
a toolbar 602 that may be located in the browser above the
web-page, and can be present as the user uses the browser to
view online content 604 (e.g., surfs the web).

As an example, the toolbar 602 comprises user configura-
tion settings for the application. A document status arca 606
allows the user to view what is currently happening (e.g., state
of'page). A toggle changes button 608 allow the user to turn on
or off the visual change indications (e.g., highlighting) on the
current page. An ignore site button 610 allows the user to
blacklist the current site from version comparison, for
example, for secure sites or pages that change entirely. A
compare-to list button 612, allows the user to select a plurality
of'prior versions of the current document, such as those stored
in the cache, to compare with the current version, or compare
with each other. A load version button 614, allows the user to
select a prior version to load into the browser. A setting button
616 can open a settings dialog that allows selection of various
controls for the application, such as visual representation
types, turning the comparison system on or off, controlling
blacklisted sites, and directing a size of the cache.

Still another embodiment involves a computer-readable
medium comprising processor-executable instructions con-
figured to implement one or more of the techniques presented
herein. An exemplary computer-readable medium that may
be devised in these ways is illustrated in FIG. 7, wherein the
implementation 700 comprises a computer-readable medium
708 (e.g., a CD-R, DVD-R, or a platter of a hard disk drive),
on which is encoded computer-readable data 706. This com-
puter-readable data 706 in turn comprises a set of computer
instructions 704 configured to operate according to one or
more of the principles set forth herein. In one such embodi-
ment 702, the processor-executable instructions 704 may be
configured to perform a method, such as the exemplary
method 100 of FIG. 1, for example. In another such embodi-
ment, the processor-executable instructions 704 may be con-
figured to implement a system, such as the exemplary system
500 of FIG. 5, for example. Many such computer-readable

US 9,330,191 B2

9

media may be devised by those of ordinary skill in the art that
are configured to operate in accordance with the techniques
presented herein.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

As used in this application, the terms “component,” “mod-
ule,” “system”, “interface”, and the like are generally
intended to refer to a computer-related entity, either hard-
ware, a combination of hardware and software, software, or
software in execution. For example, a component may be, but
is not limited to being, a process running on a processor, a
processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on a controller and the controller can be
a component. One or more components may reside within a
process and/or thread of execution and a component may be
localized on one computer and/or distributed between two or
more computers.

Furthermore, the claimed subject matter may be imple-
mented as a method, apparatus, or article of manufacture
using standard programming and/or engineering techniques
to produce software, firmware, hardware, or any combination
thereof to control a computer to implement the disclosed
subject matter. The term “article of manufacture” as used
herein is intended to encompass a computer program acces-
sible from any computer-readable device, carrier, or media.
Of course, those skilled in the art will recognize many modi-
fications may be made to this configuration without departing
from the scope or spirit of the claimed subject matter.

FIG. 8 and the following discussion provide a brief, general
description of a suitable computing environment to imple-
ment embodiments of one or more of the provisions set forth
herein. The operating environment of FIG. 8 is only one
example of a suitable operating environment and is not
intended to suggest any limitation as to the scope of use or
functionality of the operating environment. Example comput-
ing devices include, but are not limited to, personal comput-
ers, server computers, hand-held or laptop devices, mobile
devices (such as mobile phones, Personal Digital Assistants
(PDAs), media players, and the like), multiprocessor systems,
consumer electronics, mini computers, mainframe comput-
ers, distributed computing environments that include any of
the above systems or devices, and the like.

Although not required, embodiments are described in the
general context of “computer readable instructions” being
executed by one or more computing devices. Computer read-
able instructions may be distributed via computer readable
media (discussed below). Computer readable instructions
may be implemented as program modules, such as functions,
objects, Application Programming Interfaces (APIs), data
structures, and the like, that perform particular tasks or imple-
ment particular abstract data types. Typically, the functional-
ity of the computer readable instructions may be combined or
distributed as desired in various environments.

FIG. 8 illustrates an example of a system 810 comprising a
computing device 812 configured to implement one or more
embodiments provided herein. In one configuration, comput-
ing device 812 includes at least one processing unit 816 and
memory 818. Depending on the exact configuration and type
of computing device, memory 818 may be volatile (such as
RAM, for example), non-volatile (such as ROM, flash

10

30

40

45

60

10
memory, etc., for example) or some combination of the two.
This configuration is illustrated in FIG. 8 by dashed line 814.

In other embodiments, device 812 may include additional
features and/or functionality. For example, device 812 may
also include additional storage (e.g., removable and/or non-
removable) including, but not limited to, magnetic storage,
optical storage, and the like. Such additional storage is illus-
trated in FIG. 8 by storage 820. In one embodiment, computer
readable instructions to implement one or more embodiments
provided herein may be in storage 820. Storage 820 may also
store other computer readable instructions to implement an
operating system, an application program, and the like. Com-
puter readable instructions may be loaded in memory 818 for
execution by processing unit 816, for example.

The term “computer readable media” as used herein
includes computer storage media. Computer storage media
includes volatile and nonvolatile, removable and non-remov-
able media implemented in any method or technology for
storage of information such as computer readable instructions
or other data. Memory 818 and storage 820 are examples of
computer storage media. Computer storage media includes,
butis not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, Digital Versatile Disks
(DVDs) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can be accessed by device
812. Any such computer storage media may be part of device
812.

Device 812 may also include communication conne-
ction(s) 826 that allows device 812 to communicate with
other devices. Communication connection(s) 826 may
include, but is not limited to, a modem, a Network Interface
Card (NIC), an integrated network interface, a radio fre-
quency transmitter/receiver, an infrared port, a USB connec-
tion, or other interfaces for connecting computing device 812
to other computing devices. Communication connection(s)
826 may include a wired connection or a wireless connection.
Communication connection(s) 826 may transmit and/or
receive communication media.

The term “computer readable media” may include commu-
nication media. Communication media typically embodies
computer readable instructions or other data in a “modulated
data signal” such as a carrier wave or other transport mecha-
nism and includes any information delivery media. The term
“modulated data signal” may include a signal that has one or
more of its characteristics set or changed in such a manner as
to encode information in the signal.

Device 812 may include input device(s) 824 such as key-
board, mouse, pen, voice input device, touch input device,
infrared cameras, video input devices, and/or any other input
device. Output device(s) 822 such as one or more displays,
speakers, printers, and/or any other output device may also be
included in device 812. Input device(s) 824 and output
device(s) 822 may be connected to device 812 via a wired
connection, wireless connection, or any combination thereof.
In one embodiment, an input device or an output device from
another computing device may be used as input device(s) 824
or output device(s) 822 for computing device 812.

Components of computing device 812 may be connected
by various interconnects, such as a bus. Such interconnects
may include a Peripheral Component Interconnect (PCI),
such as PCI Express, a Universal Serial Bus (USB), firewire
(IEEE 1394), an optical bus structure, and the like. In another
embodiment, components of computing device 812 may be
interconnected by a network. For example, memory 818 may

US 9,330,191 B2

11

be comprised of multiple physical memory units located in
different physical locations interconnected by a network.

Those skilled in the art will realize that storage devices
utilized to store computer readable instructions may be dis-
tributed across a network. For example, a computing device
830 accessible via network 828 may store computer readable
instructions to implement one or more embodiments pro-
vided herein. Computing device 812 may access computing
device 830 and download a part or all of the computer read-
able instructions for execution. Alternatively, computing
device 812 may download pieces of the computer readable
instructions, as needed, or some instructions may be executed
at computing device 812 and some at computing device 830.

Various operations of embodiments are provided herein. In
one embodiment, one or more of the operations described
may constitute computer readable instructions stored on one
or more computer readable media, which if executed by a
computing device, will cause the computing device to per-
form the operations described. The order in which some or all
of the operations are described should not be construed as to
imply that these operations are necessarily order dependent.
Alternative ordering will be appreciated by one skilled in the
art having the benefit of this description. Further, it will be
understood that not all operations are necessarily present in
each embodiment provided herein.

Moreover, the word “exemplary” is used herein to mean
serving as an example, instance, or illustration. Any aspect or
design described herein as “exemplary” is not necessarily to
be construed as advantageous over other aspects or designs.
Rather, use of the word exemplary is intended to present
concepts in a concrete fashion. As used in this application, the
term “or” is intended to mean an inclusive “or” rather than an
exclusive “or”. That is, unless specified otherwise, or clear
from context, “X employs A or B” is intended to mean any of
the natural inclusive permutations. That is, if X employs A; X
employs B; or X employs both A and B, then “X employs A or
B” is satisfied under any of the foregoing instances. In addi-
tion, the articles “a” and “an” as used in this application and
the appended claims may generally be construed to mean
“one or more” unless specified otherwise or clear from con-
text to be directed to a singular form.

Also, although the disclosure has been shown and
described with respect to one or more implementations,
equivalent alterations and modifications will occur to others
skilled in the art based upon a reading and understanding of
this specification and the annexed drawings. The disclosure
includes all such modifications and alterations and is limited
only by the scope of the following claims. In particular regard
to the various functions performed by the above described
components (e.g., elements, resources, etc.), the terms used to
describe such components are intended to correspond, unless
otherwise indicated, to any component which performs the
specified function of the described component (e.g., that is
functionally equivalent), even though not structurally equiva-
lent to the disclosed structure which performs the function in
the herein illustrated exemplary implementations of the dis-
closure. In addition, while a particular feature of the disclo-
sure may have been disclosed with respect to only one of
several implementations, such feature may be combined with
one or more other features of the other implementations as
may be desired and advantageous for any given or particular
application. Furthermore, to the extent that the terms
“includes”, “having”, “has”, “with”, or variants thereof are
used in either the detailed description or the claims, such
terms are intended to be inclusive in a manner similar to the
term “‘comprising.”

10

15

20

25

30

35

40

45

50

55

60

65

12

What is claimed is:

1. A method for identifying changed content for a docu-
ment, comprising:

generating a parallel cache configured to store multiple

versions of a document;

receiving an access request to access a current version of

the document; and
responsive to receiving the access request:
identifying a reference point associated with the document,
the reference point referencing a prior version of the
document stored in the parallel cache, the prior version
of the document comprising one or more elements;

comparing at least some of the one or more elements asso-
ciated with the prior version of the document with one or
more elements associated with the current version of the
document;
updating the current version of the document to generate an
updated current version of the document, the updating
comprising updating the current version of the docu-
ment with at least one of a visual representation or an
auditory representation based upon differences between
the one or more elements associated with the prior ver-
sion of the document and the one or more elements
associated with the current version of the document; and

presenting the updated current version of the document for
display, at least some ofthe method implemented at least
in part via a processing unit;

wherein the one or more elements associated with the prior

version of the document is stored as a first document
object model (DOM) element tree and the one or more
elements associated with the current version of the docu-
ment stored as a second DOM element tree.

2. The method of claim 1, the reference point comprising a
timestamp indicating when a user previously accessed the
document.

3. The method of claim 2, the prior version of the document
corresponding to a version of the document available for
access at a time corresponding to the timestamp.

4. The method of claim 1, the comparing comprising iden-
tifying a set of differences between the one or more elements
associated with the prior version of the document and the one
or more elements associated with the current version of the
document.

5. The method of claim 1, further comprising storing the
prior version of the document based at least in part on a
document object model.

6. The method of claim 1, further comprising determining
whether a new element has been added to the document
between the prior version of the document and the current
version of the document.

7. The method of claim 1, the comparing comprising deter-
mining whether an element has been changed within the
document between the prior version of the document and the
current version of the document.

8. The method of claim 1, the comparing comprising deter-
mining whether an element has been removed from the docu-
ment between the prior version of the document and the
current version of the document.

9. The method of claim 1, the comparing comprising deter-
mining whether an element has been moved within the docu-
ment between the prior version of the document and the
current version of the document.

10. The method of claim 1, comprising inferring difter-
ences to emphasize based upon tracking data associated with
auser to which the updated current version of the document is
presented.

US 9,330,191 B2

13

11. A system for identifying changed content for a docu-
ment, comprising:

one or more processing units; and

memory comprising instructions that when executed by at

least one of the one or more processing units perform
operations, the operations comprising:
generating a parallel cache configured to store multiple
versions of a document;
receiving an access request to access a current version of
the document; and
responsive to receiving the access request:
identifying a reference point associated with the
document, the reference point referencing a prior
version of the document stored in the parallel
cache, the prior version of the document compris-
ing one or more clements;
comparing at least some of the one or more elements
associated with the prior version of the document
with one or more elements associated with the cur-
rent version of the document;
updating the current version of the document to gen-
erate an updated current version of the document,
the updating comprising updating the current ver-
sion of the document with at least one of a visual
representation or an auditory representation based
upon differences between the one or more elements
associated with the prior version of the document
and the one or more elements associated with the
current version of the document; and
presenting the updated current version of the docu-
ment for display;
wherein the one or more elements associated with the prior
version of the document is stored as a first document
object model (DOM) element tree and the one or more
elements associated with the current version of the docu-
ment stored as a second DOM element tree.
12. The system of claim 11, wherein the comparing further
comprises:
performing a first hash function on the first DOM element
tree to generate a first hash function output;

performing a second hash function on the second DOM
element tree to generate a second hash function output;
and

comparing the first hash function output to the second hash

function output.

13. The system of claim 12, the comparing the first hash
function output to the second hash function output compris-
ing:

identifying a mismatch between the first hash function

output and the second hash function output; and

responsive to the identifying a mismatch, traversing a

branch of the first DOM element tree and a correspond-
ing branch of the second DOM element tree to detect a
difference between an element associated with the first
DOM element tree and a corresponding element associ-
ated with the second DOM element tree.

14. The system of claim 11, comprising storing the prior
version of the document within a cache of a client machine.

10

15

20

25

30

35

40

45

50

55

14

15. The system of claim 11, the reference point comprising
a timestamp indicating when a user previously accessed the
document.

16. The system of claim 15, the prior version of the docu-
ment corresponding to a version of the document available for
access at a time corresponding to the timestamp.

17. A computer-readable storage device comprising
instructions that when executed via a processing performs
acts, comprising:

generating a parallel cache configured to store multiple

versions of a document;

receiving an access request to access a current version of

the document; and
responsive to receiving the access request:
identifying a reference point associated with the docu-
ment, the reference point referencing a prior version
of'the document stored in the parallel cache, the prior
version of the document comprising one or more ele-
ments;
comparing at least some of the one or more elements
associated with the prior version of the document with
one or more elements associated with the current ver-
sion of the document;
updating the current version of the document to generate
an updated current version of the document, the
updating comprising updating the current version of
the document with at least one of a visual representa-
tion or an auditory representation based upon differ-
ences between the one or more elements associated
with the prior version of the document and the one or
more elements associated with the current version of
the document; and
presenting the updated current version of the document
for display;
wherein the one or more elements associated with the
prior version of the document is stored as a first docu-
ment object model (DOM) element tree and the one or
more elements associated with the current version of
the document stored as a second DOM element tree.
18. The computer-readable storage device of claim 17, the
reference point comprising a timestamp indicating when a
user previously accessed the document.
19. The computer-readable storage device of claim 18, the
prior version of the document corresponding to a version of
the document available for access at a time corresponding to
the timestamp.
20. The computer-readable storage device of claim 17,
wherein the comparing further comprises:
performing a first hash function on the first DOM element
tree to generate a first hash function output;

performing a second hash function on the second DOM
element tree to generate a second hash function output;
and

comparing the first hash function output to the second hash

function output.

